skip to contentstylized crane logoWhite Crane Education
Video Lectures>Practice Problems

Exercises

Icon Legend

Exercises

Determine whether $A\subseteq B$, $B\subseteq A$ or neither. Is either set a proper subset of the other?

  1. $A=\{1, 2, 3\}$, $B=\{\{1\}, \{2\}, \{3\}\}$green check mark - show solution
  1. $A=\emptyset$, $B=\emptyset$green check mark - show solution
  1. $A = \{(x, y) | x, y\in\mathbb{R} \text { and } x^2 + y^2 = 1\}$, $B=\{(x, y) | x=r\cos(\theta), y=r\sin(\theta), 0\lt\theta\lt 2\pi\}$green check mark - show solution
  1. $A = \{\emptyset\}$, $B=\emptyset$green check mark - show solution
  1. $A = \{1, 4, 9, 16\}$, $B=\{1^2, 2^2, 3^2, 4^2\}$green check mark - show solution

If $A=\{2, 4, 6, 8\}$, $B=\{1, 3, 5, 7, 9\}$, $C=\{1, 2, 3, 7, 8, 9\}$ and $U=\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, determine what the following sets are.

  1. $A-B$green check mark - show solution
  1. $A\cap B$green A - final answer
  1. $A\cup B \cup C$green A - final answer
  1. $\overline{A\cup C}$green A - final answer
  1. $\overline{A} \cup \overline{C}$green A - final answer
  1. $\overline{A} \cap \overline{B} \cap \overline{C}$green A - final answer

If $A=\{x\in\mathbb{R} | 0 \lt x \lt 4\}$, $B=\{x\in \mathbb{R} | 3 \le x \le 5\}$, $C=\{x\in \mathbb{R} | 4 \lt x \lt 5\}$ and $U=\{x\in\mathbb{R} | 0 \lt x \lt 6\}$, determine what the following sets are.

  1. $A-B$green A - final answer
  1. $A \cup B$green A - final answer
  1. $\overline{C}$green A - final answer
  1. $\overline{A} \cup \overline{B}$green A - final answer
  1. $\overline{A-C}$green A - final answer
  1. $A \cup B \cup C$green A - final answer

Suppose $A_i=\{x\in\mathbb{R} | (1/n, 1]\}$ where $U=\{x\in\mathbb{R} | 0 \le x \le 1\}$. determine the following sets.

  1. $\bigcup\limits_{i=1}^{\infty} A_i$green question mark - hintgreen check mark - show solution
  1. $\bigcap\limits_{i=2}^{\infty} A_i$green question mark - hintgreen check mark - show solution
  1. $\bigcup\limits_{i=2}^{\infty} \overline{A_i}$green check mark - show solution
  1. $\bigcap\limits_{i=1}^{\infty} \overline{A_i}$green check mark - show solution
  1. Are the sets mutually disjoint?green question mark - hintgreen check mark - show solution

Suppose $A_i=\{x\in\mathbb{R} | (1/(n+1), 1/n]\}$ where $U=\{x\in\mathbb{R} | 0 \le x \le 1\}$. Determine the following sets.

  1. $\bigcup\limits_{i=1}^{100} A_i$
  1. $\bigcap\limits_{i=1}^{100} A_i$
  1. $\bigcup\limits_{i=1}^{\infty} A_i$green check mark - show solution
  1. $\bigcap\limits_{i=1}^{\infty} A_i$green check mark - show solution
  1. $\bigcup\limits_{i=1}^{\infty} \overline{A_i}$green check mark - show solution
  1. $\bigcap\limits_{i=1}^{\infty} \overline{A_i}$green check mark - show solution
  1. Are the sets mutually disjoint?green check mark - show solution

Icons courtesy of icons8.com


link to Facebook