skip to contentstylized crane logoWhite Crane Education
Video Lectures>Exploration>Practice Problems

Exercises

Icon Legend

Exercises

Prove or disprove the following.

  1. $A \subseteq A \cup B$green check mark - show solution
  1. $A \cup \overline{A} = U$green question mark - hintgreen check mark - show solution
  1. $A - B \subseteq A$green check mark - show solution
  1. $\overline{A} \cup \overline{B} = \overline{A \cap B}$green question mark - hintgreen check mark - show solution
  1. $\overline{A} \cap \overline{B} \subset \overline{A \cup B}$green question mark - hintgreen check mark - show solution
  1. $A \cup(A \cap B) = A$
  1. $A \cap \overline{A} = \emptyset$green question mark - hintgreen check mark - show solution
  1. $(A - B)\cup(C-B) = (A\cup C)-B$
  1. If $A\subseteq B$ then $A \cup \overline{B} = \emptyset$.green check mark - show solution
  1. If $A \subseteq B$ then $A \cap \overline{B} = \emptyset$.green question mark - hintgreen check mark - show solution
  1. $\bigcap \limits_{i=1}^n (A_i - B) = \left(\bigcap \limits_{i=1}^n A_i\right) - B$
  1. $A \cup U = U$
  1. $\bigcup \limits_{i=1}^n (A_i - B) = \left(\bigcup \limits_{i=1}^n A_i\right) - B$green check mark - show solution
  1. Show that $A - B$, $B - A$ and $A \cap B$ is a partition of $A \cup B$.green question mark - hintgreen check mark - show solution

Explorations

  1. Earlier on this page, you showed that $A \subseteq A \cup B$. Under what circumstances would the relationship be $A \subset A \cup B$?

Icons courtesy of icons8.com


link to Facebook